
PROMPT Software Testing
Types of Test Design Techniques

Test Design Techniques
…can be classified based on several different aspects

However, we will start from the perspective of
software behavior

●  Type of abstraction
● Graph-based, logic-based, syntax-based, etc.

●  Software engineering artifact
● Specification-based versus implementation-based

●  Level of knowledge of the inner workings of the
software
● Black-box, Gray-box, or White-box

Software Behavior?

input output

Software Behavior?

input output

Software behaviour can be defined as a
function that maps an element in the
input domain to an element in the
output domain

Software Behavior: example

input output

Function: y=square(x)

x=2

square(x) y=4

Software Behavior

Desired
software
behavior

Requirements
analysis

Architectural
design

Subsystem
design

Detailed design

Implementation

Acceptance test

System test

Integration test

Module test

Unit test

Software Behavior

Requirements
analysis

Architectural
design

Subsystem
design

Detailed design

Implementation

Acceptance test

System test

Integration test

Module test

Unit test

Needs or
ideas

Desired
software
behavior

Software Behavior

Specified
software
behavior

Requirements
analysis

Architectural
design

Subsystem
design

Detailed design

Implementation

Acceptance test

System test

Integration test

Module test

Unit test

Software Behavior

Specified
software
behavior

Requirements
analysis

Architectural
design

Subsystem
design

Detailed design

Implementation

Acceptance test

System test

Integration test

Module test

Unit test

Software Behavior

Implemented
software
behavior

Requirements
analysis

Architectural
design

Subsystem
design

Detailed design

Implementation

Acceptance test

System test

Integration test

Module test

Unit test

Software Behavior

Implemented
software
behavior

Requirements
analysis

Architectural
design

Subsystem
design

Detailed design

Implementation

Acceptance test

System test

Integration test

Module test

Unit test

Testing and Software
Behavior

Testing and Software
Behavior (cont.)

B A

C

D

E

F

G

Testing and Software
Behavior (cont.)

A: Desired, specified and
implemented software behavior

B A

C

D

E

F

G

Testing and Software
Behavior (cont.)

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior

B A

C

D

E

F

G

Testing and Software
Behavior (cont.)

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior

B A

C

D

E

F

G

Testing and Software
Behavior (cont.)

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior

B A

C

D

E

F

G

Testing and Software
Behavior (cont.)

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior

B A

C

D

E

F

G

Testing and Software
Behavior (cont.)

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior

B A

C

D

E

F

G

Testing and Software
Behavior (cont.)

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior
G: Desired and implemented, but
not specified software behavior

B A

C

D

E

F

G

Test Design Techniques

Test design
technique

Software
artifact

Test
cases

●  Based on this, how does the selection of software
artifact affect the resulting set of test cases?

Specification-Based
(Functional) Test Design

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior
G: Desired and implemented, but
not specified software behavior

B A

C

D

E

F

G

Specification-Based
(Functional) Test Design

B A

C

D

E

F

G

Example: ARIANE 5

“The specification of the inertial
reference system and the tests
performed at equipment level
did not specifically include the
Ariane 5 trajectory data.

Consequently the realignment
function was not tested under
simulated Ariane 5 flight
conditions, and the design error
was not discovered.”

- Wikipedia

Implementation-Based
(Structural) Test Design

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior
G: Desired and implemented, but
not specified software behavior

B A

C

D

E

F

G

Implementation-Based
(Structural) Test Design

B A

C

D

E

F

G

Example: Day of the week

Given the number of the day, the
“dayOfTheWeek” function prints the name of
that day.

String dayOfTheWeek(int dayNr)
{
 switch (dayNr)
 {
 case 1: return “Monday”;
 case 2: return “Tuesday”;
 case 3: return “Wednesday”;
 default: return “No such day”;
 }
}

Implementation-Based
(Structural) Test Design

B A

C

D

E

F

G

Example: Day of the week

Given the number of the day, the
“dayOfTheWeek” function prints the name of
that day.

String dayOfTheWeek(int dayNr)
{
 switch (dayNr)
 {
 case 1: return “Monday”;
 case 2: return “Tuesday”;
 case 3: return “Wednesday”;
 default: return “No such day”;
 }
}

We can easily test all switch cases or
statements here without coming across

any problems.

Negative Testing?

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior
G: Desired and implemented, but
not specified software behavior

B A

C

D

E

F

G

Negative Testing?

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior
G: Desired and implemented, but
not specified software behavior

B A

C

D

E

F

G

Note that several studies show that one of the most
common causes of software failures is “faults of

omission”. In other words, there is no “bug” in the code -
the desired behavior was simply not captured in the

specification

Negative Testing?

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior
G: Desired and implemented, but
not specified software behavior

B A

C

D

E

F

G

Note also that it is vital to realize that functional,
structural and negative testing are inherently

complementary and all need to be considered in test
design.

Negative Testing?

A: Desired, specified and
implemented software behavior
B: Desired, but not specified or
implemented software behavior
C: Specified, but not desired or
implemented software behavior
D: Implemented, but not desired
or specified software behavior
E: Desired and specified, but not
implemented software behavior
F: Specified and implemented,
but not desired software behavior
G: Desired and implemented, but
not specified software behavior

B A

C

D

E

F

G

In the unit testing module, we talk more about
functional, structural and negative test design.

