
PROMPT Software Testing 
Types of Test Design Techniques 
 



Test Design Techniques 
…can be classified based on several different aspects 

However, we will start from the perspective of 
software behavior 

●  Type of abstraction 
● Graph-based, logic-based, syntax-based, etc. 

●  Software engineering artifact 
● Specification-based versus implementation-based 

●  Level of knowledge of the inner workings of the 
software 
● Black-box, Gray-box, or White-box 
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Software Behavior? 

input output 

Software behaviour can be defined as a 
function that maps an element in the 
input domain to an element in the 
output domain 



Software Behavior: example 

input output 

Function: y=square(x)

x=2

square(x) y=4
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Test Design Techniques 

Test design 
technique 
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artifact 
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cases 

●  Based on this, how does the selection of software 
artifact affect the resulting set of test cases? 
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Example: ARIANE 5 

“The specification of the inertial 
reference system and the tests 
performed at equipment level 
did not specifically include the 
Ariane 5 trajectory data.

Consequently the realignment 
function was not tested under 
simulated Ariane 5 flight 
conditions, and the design error 
was not discovered.”

- Wikipedia
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Example: Day of the week 
 
Given the number of the day, the 
“dayOfTheWeek” function prints the name of 
that day. 
 
String dayOfTheWeek(int dayNr) 
{ 
  switch (dayNr) 
  { 
    case 1: return “Monday”;  
    case 2: return “Tuesday”;  
    case 3: return “Wednesday”; 
    default: return “No such day”; 
  }  
} 
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Example: Day of the week 
 
Given the number of the day, the 
“dayOfTheWeek” function prints the name of 
that day. 
 
String dayOfTheWeek(int dayNr) 
{ 
  switch (dayNr) 
  { 
    case 1: return “Monday”;  
    case 2: return “Tuesday”;  
    case 3: return “Wednesday”; 
    default: return “No such day”; 
  }  
} 

We can easily test all switch cases or 
statements here without coming across 

any problems.  
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Note that several studies show that one of the most 
common causes of software failures is “faults of 

omission”. In other words, there is no “bug” in the code - 
the desired behavior was simply not captured in the 

specification 
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Note also that it is vital to realize that functional, 
structural and negative testing are inherently 

complementary and all need to be considered in test 
design.  
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In the unit testing module, we talk more about 
functional, structural and negative test design. 


